Tom’s Hardware intern: So testen wir Lautsprecher, Kopfhörer und Geräuschemissionen

Subjektiver Höreindruck

Kommen wir nun zur subjektiven Beurteilung und lassen die Messkurven einfach mal links liegen. Angeschlossen ist das System nun analog am Ausgang der Creative X7 und es wird verlustfrei komprimiertes Material aus verschiedenen Quellen eingespielt.

Zunächst wollen wir aber erklären, wie wir die einzelnen Frequenzbereiche für unsere Bewertung aufteilen und weshalb gerade diese Einzelbewertung wichtiger ist als das bloße Abhören einiger weniger Titel. Dazu kommt dann später noch separat die Bewertung von räumlicher Abbildung, Pegelfestigkeit und technischer Aspekte.

Wenn man genau analysiert, welche Frequenzbereiche auf einem Lautsprecher wie gut oder schlecht wiedergegeben werden können, kann man daraus bereits ziemlich sicher auf dessen allgemeine Performance schließen, die man in der Summe für das gesamte Frequenzspektrum erwarten kann.

Hierfür verlinken wir gern auch auf die interaktive Darstellung von independentrecording.net (IRN), die eine gute Übersicht über die einzelnen Frequenzbereiche und deren wichtigste Vertreter and Schallquellen bietet. Einfach auf das statische Vorschaubild oder den Textlink klicken!

Wir sehen, dass vom Tiefstbass bis hin zum Hochton alle Frequenzbereiche recht ordentlich belegt sind. Im Folgenden stellen wir nun unsere Tabelle der wichtigsten Bereiche vor, nach denen wir unsere Lautsprecher und Kopfhörer subjektiv bewerten.

Kategorie
Frequenzbereich
Beschreibung
Tiefstbass: 16 bis 32 Hz Dieser Bereich der Subkontraoktave wird nur von sehr wenigen Instrumenten erreicht, kann aber vor allem bei klassischer Musik durchaus von Bedeutung sein. Nur die wenigsten der üblicherweise von uns getesteten Lautsprecher sind in der Lage, diesen Bereich komplett oder wenigstens ansatzweise wiederzugeben.
Tiefbass:
32 bis 64 Hz In der Kontraoktave (32,7 bis 65,4 Hz) liegen bereits viele interessante Instrumente sowie die Effektspur sauber abgemischter Dolby-Geräuschkulissen von Filmen (sogenannte Spur 0) und bestimmte Effekte in Spielen. Egal ob extrem tief abgestimmte Bassgitarren, Erdbeben, Detonation oder große Basstrommel  (Kick Drum) für die Tanzwütigen – ohne Tiefbass klingt alles ein wenig flach.
Bass und Oberbass:
64 bis 150 Hz Der Oberbass bis 150 Hz, in dem auch die Große Oktave (65,4 bis 130,8 Hz) liegt, beherbergt die Sprachgrundfrequenz der männlichen Stimme und entscheidet sehr stark über die naturgetreue Wiedergabe männlicher Vocals. Hier prüfen wir vor allem die Wiedergabe guter männlicher Vocals sowie das Harmonieren unterschiedlicher Stimmlagen einschließlich der Ortung einzelner Quellen (Chor).
Untere Mitten:
150 bis 400 Hz Der sogenannte Grundtonbereich spielt zusammen mit dem Oberbass eine sehr wichtige Rolle für die subjektiv empfundene Wärme bzw. Fülle des Klangbildes vieler Instrumente. Die Sprachgrundfrequenz weiblicher Stimmen ist ebenfalls in diesem Bereich zu finden, so dass wir sowohl einzelne, weibliche Vocals als auch den Chor als Summe werten, um uns ein Urteil über das räumliche Abbildungsvermögen zu verschaffen.
Obere Mitten:
400 Hz bis 2 kHz Die oberen Mitten beinhalten bei einem Kilohertz eine Marke, die immer noch als Referenz für viele Messungen gilt. Das merkt man leider oft bei günstigeren Geräten, da die Hersteller gern versuchen, gerade diese Frequenz etwas überzubetonen, um in den technischen Angaben beeindrucken zu können. Allerdings spielt dieser Bereich auch keine unbedeutende Rolle für eine gute, räumliche Auflösung – vor allem bei sehr breitbandigen Geräuschen.
Untere Höhen: 2 kHz bis 3,5 kHz In diesem Bereich ist das menschliche Gehör am empfindlichsten, zumal die unteren Höhen für die gute Oberton-Wiedergabe der menschlichen Stimme zuständig sind. Dieser Frequenzbereich ist nämlich entscheidend für die Wiedererkennung einer Stimme oder eines Instrumentes, so dass man in diesem Zusammenhang auch von der jeweiligen Klangfarbe sprechen kann.
Mittlere Höhen:
3,5 kHz bis 6 kHz Diese Frequenzbereich entscheidet über das Ge- oder Misslingen der Sprachwiedergabe als Gesamtbild, denn die S- und Zischlaute (Sibilanten) fallen in diesen Bereich. Viele Saiten- und Blasinstrumente stehen und fallen in ihrer Brillanz mit der möglichst guten Abbildung in diesem Bereich. Denn wenn es zu Überspitzungen kommt, entsteht sehr schnell ein metallischer oder kratziger Eindruck.
Obere Höhen:
6 kHz bis 10 kHz Dieser Bereich ist wichtig für die möglichst breitbandige Abbildung entstehender Oberwellen vieler Instrumente und der Luftgeräusche (Atemgeräusche, Abrissgeräuche) sowie diverser Schlaginstrumente. Beliebtes Objekt ist in diesem Bereich der gern zitierte Jazzbesen. Während eine Gitarre weniger leidet, wird aus einer Violine im Extremfall schnell eine Flöte.
Superhochton: 10 kHz bis 20 kHz Dieser Bereich wird nur von wenigen Instrumenten abgedeckt, sorgt aber bei gut hörenden Menschen für die endgültige Unterscheidung zwischen schlechter oder guter Wiedergabe. Wer glaubt, noch höher hören zu können, gleitet ins Voodoo ab – und besitz zudem mit Sicherheit auch vergoldete Lautsprecherkabel. Alle Frequenzen ab etwa acht Kilohertz sind zudem in ihrer Obergrenze bereits stark altersabhängig.

Was ist das räumliche Hören?

Die möglichst unbeeinflusste Wiedergabe des Frequenzsprektrum ist jedoch nur eine Seite der Medaille. Wir müssen in gleichem Maße auch beurteilen, wie gut einzelne Schallquellen aufgelöst und geortet werden können. Das wiederum beschreibt die Präzision der Wiedergabe, bei der das räumliche Hören eine sehr starke Rolle spielt.

Der Mensch hat zwei Ohren, zwischen denen als akustische Barriere in der Mitte ja bekanntlich der Kopf sitzt. Doch wie hört der Mensch nun eigentlich räumlich und ist dabei in der Lage, akustische Ereignisse gut zu lokalisieren und einem bestimmten Ort zuzuordnen? Das Ganze baisert auf zwei Faktoren: Den jeweiligen Laufzeitdifferenzen (also wann genau der Schall am jeweiligen Ohr auftrifft) und den Intensitätsdifferenzen (Unterschiede im Schalldruckpegel).

Allerdings darf man man dabei eines nicht außer Acht lassen: Verwertbare Informationen über die räumliche Lage einer Schallquelle aufgrund von Intensitäts- und Laufzeitdifferenzen können von Ohren und Gehirn nur dann erkannt und verarbeitet werden, wenn sich der Schall als solcher auch inhaltlich ändert (plötzliches Auftreten, Spektrum, Pegel usw.). So ist beispielsweise das Grundgeräusch in Wäldern oder einer Großsstadt kaum räumlich zu differenzieren, wenn man sich mittendrin befindet. Je heftiger oder schneller ein Wechsel erfolgt, um so besser ist die Schallquelle lokalisierbar.

Laufzeitdifferenz

Als Laufzeitdifferenz bezeichnet man den Zeitunterschied, den Schallwellen eines Ereignisses benötigen, um beide Ohren zu erreichen. Liegt die Quelle nicht frontal (mindestens 3° abweichend), erreicht der Schall logischerweise das näher liegende Ohr früher als das andere (siehe Abbildung). Diese Laufzeitdifferenz ist somit abhängig von den unterschiedlichen Entfernungen, die der Schall zurückllegen muss, um die Ohren zu erreichen. Das menschliche Gehör ist in der Lage, sogar noch kleinste Laufzeitdifferenzen von 10 bis 30 µs wahrzunehmen!

Intensitätsdifferenz

Eine mögliche Intensitätsdifferenz (Pegelunterschied) tritt immer dann auf, wenn die Wellenlänge des auftreffenden Schalls im Vergleich zum Kopf klein genug ist ist und es daher zu Reflexionen kommt, die den Kopf zum Hindernis werden lassen. Wie man auf der Abbildung gut sieht, entsteht dann auf der gegenüberliegenden Seite ein sogenannter Schallschatten. Dieser Effekt tritt aber erst ab Frequenzen oberhalb von etwa zwei Kilohertz auf und verstärkt sich mit steigender Frequenz noch. Für die größeren Wellenlängen der tieferen Töne ist ein Kopf jedoch kein Hindernis mehr.

Orten eines akustischen Ereignisses: Lokalisation

Tritt ein akustisches Ereignis außerhalb des Kopfes – also beispielsweise über Lautsprecher generiert – auf, so so spricht man von einer sogenannten Lokalisation. Die Auswertung der Informationen der Ohren ermöglicht es dem Gehirn, den Ursprung des Ereignisses räumlich genau zu orten.


Der Kopf befindet sich zur genauen räumliche Lokalisierung übrigens unbewusst auch stets in Bewegung, so dass ein Drehen, Heben, Senken oder Neigen eine Lokalisation über alle drei Ebenen (X, Z und Y) ermöglicht. In diesem Fall – aber eben nur dann – kann man auch von echtem 3D-Klang (dreidimensional) sprechen, der aber mit normalen Lausprecher-Setups, die sich ja aller auf mehr oder weniger gleicher Höhe befinden, nicht zu erzeugen ist.

Besonderheiten bei Kopfhörern

Bei der Verwendung von Kopfhörern tritt die Wahrnehmung des Reizes jedoch immer direkt im Kopf auf! Sobald die von einem Kopfhörer erzeugten Schallwellen synchron sind, empfindet man die Schallquelle so, als würde sie sich in der Mitte des Kopfes – also der Medianebene – befinden.


Unter der Lateralisation versteht man dann eine scheinbare Wegbewegung der Schallquelle aus der Mitte des Kopfes hin zu einer Seite. Dieses Kopfhörer-typische “Wandern” einer vermeintlichen Schallquelle entsteht wiederum – wie eingangs bereits erklärt – durch eine Laufzeitdifferenz (Signale werden zeitversetzt eingespielt) bzw. Intensitätsdifferenz (Lautstärkeunterschiede).

Ausgewählte Musiktitel für die Bewertung von Frequenzbereichen, Präzion und raumlicher Abbildung

Wir verzichten bewusst auf den üblichen HiFi-Jargon und wollen uns nicht über Bassgewitter, hauchzarte Streicher oder eine gewaltige Bühne und Ähnliches auslassen. Die theoretische Einführung zu den Genre-relevanten Frequenzbereichen und den Grundlagen des räumlichen Hörens sollten dazu ein äquivalenter Ersatz sein. Analytik und Präzision zählen also mehr als der verbal verkrüppelte Marketing-Sprech mit seinen blumig-nebulösen Umschreibungen.

Analyse
Titel / Quelle
Tiefstbass/
Tiefbass
(Range):
J.S. Bach – Toccata und Fuge D-Moll (Flac, Vinyl-Rip)
Tschaikowsky – Festival-Ouvertüre 1812 (Flac, Vinyl-Rip)
Avatar (BluRay, Effektspur)
Bassqualität: Till Brönner – It Never Entered My Mind (CD)
Blue Man Group – The Complex (CD)
Kid Cudi – Day and Night (The Widdler’s Dubstep Remix, CD)
Räumliche
Auflösung:
Clapton Unplugged (CD)
Dire Straits – Brothers in Arms (CD)
Gershwin – Klavierkonzert in F (Flac, Vinyl-Rip)
Präzision von
Instrumenten
und Stimmen:
Brahms – Streichquartett Nr. 1 C-moll Op.51 (Flac, Vinyl-Rip)
Bach – Weihnachtsoratorium Kantate VI (Thomaner-Chor, Vinyl-Rip)
Dire Straits – Brothers in Arms (Flac, Vinyl-Rip)
Dynamik und
Pegelfestigkeit:
Gershwin – Klavierkonzert in F (Flac, Vinyl-Rip)
Mike Oldfield – Tubular Bells III  (Flac, Vinyl-Rip)
Maurice Ravel – Boléro (Flac, Vinyl-Rip)

Ebenfalls interessant...